Ina V.S. Mullis

April 2001
© 2001 International Association for the Evaluation of Educational Achievement (IEA)

Mathematics Benchmarking Report: TIMSS 1999 Eighth Grade / by Ina V.S. Mullis, Michael O. Martin, Eugenio J. Gonzalez, Kathleen M. O’Connor, Steven J. Chrostowski, Kelvin D. Gregory, Robert A. Garden, Teresa A. Smith

Publisher: International Study Center Lynch School of Education Boston College

Library of Congress
Catalog Card Number: 2001087804
ISBN 1-889938-19-X
For more information about TIMSS contact:
The International Study Center Lynch School of Education
Manresa House
Boston College
Chestnut Hill, MA 02467
United States
For information on ordering this report, write to the above address or call +1-617-552-1600

This report also is available on the World Wide Web: http://www.timss.org

Funding for the TIMSS 1999 Benchmarking Study was provided by the National Center for Education Statistics and the Office of Educational Research and Improvement of the U.S. Department of Education, the U.S. National Science Foundation, and participating jurisdictions.

Boston College is an equal opportunity, affirmative action employer.

Printed and bound in the United States

5

1 EXECUTIVE SUMMARY

3 Executive Summary
6 Major Findings from the TIMSS 1999 Benchmarking Study

I

13 INTRODUCTION

15 What Is TIMSS 1999 Benchmarking?
16 Why Did Countries, States, Districts, and Consortia Participate?

18 Which Countries, States, Districts, and Consortia Participated?
20 Exhibit 1
Exarticipants in TIMSS 1999 Benchmarking
22 What Is the Relationship Between the TIMSS 1999 Data for the United States and the Data for the Benchmarking Study?

23 How Was the TIMSS 1999
Benchmarking Study Conducted?
24 What Was the Nature of the Mathematics Test?

25 How Does TIMSS 1999 Compare with NAEP?

26 How Do Country Characteristics Differ?
27 Exhibit 2
Selected Characteristics of TIMSS 1999 Countries

28
Selected Economic Indicators of TIMSS 1999 Countries
29 How Do the Benchmarking Jurisdictions Compare on Demographic Indicators?
Exhibit 4
Selected Characteristics of States, Districts and Consortia

1

33 CHAPTER 1

Student Achievement in Mathematics

35 How Do Participants Differ in Mathematics Achievement?

Exhibit 1.1
Distribution of Mathematics Achievement
40 Exhibit 1.2
Multiple Comparisons of Average Mathematics Achievement

42 How Do Benchmarking Participants Compare with International Benchmarks of Mathematics Achievement?

45 Exhibit 1.3
TIMSS 1999 International Benchmarks of Mathematics Achievement

Exhibit 1.4
Percentages of Students Reaching TIMSS 1999 International Benchmarks of Mathematics Achievement

What Are the Gender Differences in Mathematics Achievement?

50 Exhibit 1.5
Gender Differences in Average Mathematics Achievement
52 Exhibit 1.6
Percentages of Girls and Boys Reaching Each Participant's Own Upper Quarter and Median Levels of Mathematics Achievement

2

55 CHAPTER 2

Performance at International Benchmarks

58 How Were the Benchmark Descriptions Developed?

59 How Should the Descriptions Be Interpreted

60 Item Examples and Student Performace

61 Achievement at the Top 10\% Benchmark

62 Exhibit 2.1
Description of Top 10\% TIMSS International Benchmark of Mathematics Achievement
65 Exhibit 2.2-2.5
Top 10\% TIMSS International Benchmark Example Items

69 Achievement at the Upper Quarter Benchmark

71 Exhibit 2.6
Description of Upper Quarter TIMSS International Benchmark of Mathematics Achievement
72 Exhibit 2.7-2.11
Upper Quarter TIMSS International Benchmark Example Items

77 Achievement at the Median Benchmark

79 Exhibit 2.12
Description of Median TIMSS International Benchmark of Mathematics Achievement

80 Exhibit 2.13-2.15
Median TIMSS International Benchmark Example Items

83 Achievement at the Lower Quarter Benchmark

85
Exhibit 2.16
Description of Lower Quarter TIMSS International Benchmark of Mathematics Achievement
86 Exhibit 2.17-2.20
Lower Quarter TIMSS International Benchmark Example Items

90 What Issues Emerge from the Benchmark Descriptions?

91 CHAPTER 3

Average Achievement in the Mathematics Content Areas

94 How Does Achievement Differ Across Mathematics Content Areas?

Exhibit 3.1
Average Achievement in Mathematics Content Areas
99 In Which Content Areas Are Students Relatively Strong or Weak?
100 Exhibit 3.2
Countries' Profiles of Relative Performance in
Mathematics Content Areas
101 Exhibit 3.3
States' Profiles of Relative Performance in Mathematics Content Areas
102 Exhibit 3.4
Districts' and Consortia's Profiles of Relative Performance in Mathematics Content Areas

103 What Are the Gender Differences in Achievement for the Content Areas?

104 Exhibit 3.5
Average Achievement in Mathematics Content Areas by Gender

107 CHAPTER 4

Students' Backgrounds and Attitudes
Towards Mathematics
109 What Educational Resources Do
Students Have in Their Homes?
112 Exhibit 4.1
Index of Home Educational Resources (HER)
117 Exhibit 4.2
Students Having a Computer at Home
119 Exhibit 4.3
Frequency with Which Students Speak Language of the Test at Home
120 Exhibit 4.4
Students' Race/Ethnicity
122 Exhibit 4.5
Students' Expectations for Finishing School
123 How Much of Their Out-of-School Time Do Students Spend on Homework During the School Week?
126
Exhibit 4.6
Index of Out-of-School Study Time (OST)
128
Exhibit 4.7
Total Amount of Out-of-School Time Students Spend Studying Mathematics or Doing Mathematics Homework on a Normal School Day

129 How Do Students Perceive Their Ability in Mathematics?

130 Exhibit 4.8
Index of Students' Self-Concept in Mathematics (SCM)
133 Exhibit 4.9
Index of Students' Self-Concept in Mathematics (SCM)
by Gender
134 What Are Students' Attitudes Towards Mathematics?

136
Exhibit 4.10
Index of Students' Positive Attitudes Towards Mathematics (PATM)
138 Exhibit 4.11
Index of Students' Positive Attitudes Towards
Mathematics (PATM) by Gender

5

139 CHAPTER 5

The Mathematics Curriculum

142 Does Decision Making About the Intended Curriculum Take Place at the National, State, or Local Level?

144 Exhibit 5.1
Countries' Mathematics Curriculum
145 Exhibit 5.2
States' Curriculum Frameworks/Content Standards
146 Exhibit 5.3
Districts' and Consortia's Curriculum
147 How Do Education Systems Support and Monitor Curriculum Implementation?
Exhibit 5.4
Countries' Use of Methods to Support or Monitor Implementation of the Curriculum
150 Exhibit 5.5
States', Districts' and Consortia's Use of Textbooks and Instructional Materials to Support Implementation of the Curriculum
152 Exhibit 5.6
States', Districts' and Consortia's Use of Pedagogical Guides to Support Implementation of the Curriculum
154 Exhibit 5.7
States', Districts' and Consortia's Use of Accreditation to
Support Implementation of the Curriculum
157 What TIMSS 1999 Countries Have Assessments And Exams in Mathematics?
158 Exhibit 5.8
Countries' System-Wide Assessments in Mathematics
159 Exhibit 5.9
Countries' Public Examinations in Mathematics
160 What Benchmarking Jurisdictions Have Assessments in Mathematics?
162 Exhibit 5.10
States' Mathematics Assessments
163 Exhibit 5.11
Status of State-Developed Mathematics Assessments
164 Exhibit 5.12
States' Use of Mathematics Assessments with
Consequences
166 Exhibit 5.13
Districts' and Consortia's State and Local Mathematics Assessments

168 How Do Education Systems Deal with Individual Differences?

169 Exhibit 5.14
Differentiation of Curriculum for Students with Different Abilities or Interests

6

195 CHAPTER 6

Teachers and Instruction

199 What Preparation Do Teachers Have

178 What Mathematics Topics Are Included in the Intended Curriculum?

180 Exhibit 5.18
Mathematics Topics Included in the TIMSS Questionnaires
182 Exhibit 5.19
Mathematics Topics in the Intended Curriculum for At Least 90% of Students, Up to and Including Eighth Grade

183 Have Students Been Taught the Topics Tested by TIMSS?

188 Exhibit 5.20
Percentages of Students Taught Fractions and Number Sense Topics
190 Exhibit 5.21
Percentages of Students Taught Measurement Topics
191 Exhibit 5.22
Percentages of Students Taught Data Representation, Analysis, and Probability Topics
192 Exhibit 5.23
Percentages of Students Taught Geometry Topics
193 Exhibit 5.24
Percentages of Students Taught Algebra Topics
194 What Can Be Learned About the Mathematics Curriculum?
for Teaching Mathematics?
204 Exhibit 6.1
Age and Gender of Teachers
205 Exhibit 6.2
Teachers' Major Area of Study in Their BA, MA, or Teacher Training Certification Program

206 Exhibit 6.3
Index of Teachers' Confidence in Preparation to Teach Mathematics (CPTM)

208 How Much School Time Is Devoted to Mathematics Instruction?

210 Exhibit 6.4
Mathematics Instructional Time at Grade 8
211 Exhibit 6.5
Number of Hours Mathematics Is Taught Weekly
237 In What Types of Professional Development Activities Do U.S. Mathematics Teachers Participate?

239 Exhibit 6.18
Students Taught by Teachers Who Participated in Professional Development - Classroom Observation
240 Exhibit 6.19
Students Taught by Teachers Who Participated in Professional Development - School- and District-Based Activities
241 Exhibit 6.20
Students Taught by Teachers Who Participated in Professional Development - Workshops, Conferences, and Networks
242 Exhibit 6.21
Students Taught by Teachers Who Participated in
Professional Development - Individual Activities*
243 Exhibit 6.22
Professional Development Topics Emphasized Quite a Lot or A Great Deal

213 What Activities Do Students Do in Their Mathematics Lessons?

217 Exhibit 6.7
Mathematics Class Size
218 Exhibit 6.8
Time Spent on Various Activities in Mathematics Class
219 Exhibit 6.9
Students Doing Various Activities in Mathematics Class
220 Exhibit 6.10
Presentational Modes Used in Mathematics Class
222 Exhibit 6.11
Index of Teachers' Emphasis on Mathematics Reasoning and Problem-Solving (EMRPS)

225 How Are Calculators and Computers Used?

227 Exhibit 6.12
Calculator Use in Mathematics Class
228 Exhibit 6.13
Index of Emphasis on Calculators in Mathematics Class (ECMC)
230 Exhibit 6.14
Frequency of Computer Use in Mathematics Class
231 Exhibit 6.15
Access to the Internet and Use of the Internet for Mathematics Projects

232 What Are the Roles of Homework and Assessment?

234 Exhibit 6.16
Index of Teachers' Emphasis on Mathematics Homework (EMH)
236 Exhibit 6.17
Types of Assessment Teachers Give Quite a Lot or A
Great Deal of Weight

247 CHAPTER 7

School Contexts for Learning and Instruction

249 What Is the Economic Composition of the Student Body?

251
Exhibit 7.1
Students Eligible to Receive Free/Reduced Price Lunch
252 What School Resources Are Available
to Support Mathematics Learning?
254
Exhibit 7.2
Index of Availability of School Resources for Mathematics Instruction (ASRMI)

256 What Is the Role of the School
Principal?
257
Time Principal Spends on Various School-Related
Activities
258 What Are the Schools' Expectations of Parents?

259
Schools' Expectations for Parental Involvement
261 How Serious Are School Attendance Problems?
Exhibit 7.5
Index of Good School and Class Attendance (SCA)
264
Frequency and Seriousness of Student Attendance Problems

How Safe and Orderly Are Schools?
Exhibit 7.7
Frequency and Seriousness of Student Behavior
Threatening an Orderly School Environment
268 Exhibit 7.8
Frequency and Seriousness of Student Behavior
Threatening a Safe School Environment

1

270 REFERENCE 1

Students' Backgrounds and Attitudes Towards Mathematics

272 Exhibit R1.1
Educational Aids in the Home: Dictionary, Study
Desk/Table, and Computer
273 Exhibit R1.2
Number of Books in the Home
275
Highest Level of Education of Either Parent
276
Exhibit R1.4
Country Modifications to the Definitions of Educational
Levels for Parents' Education or Students' Expectations for Finishing School

Students' Perception of the Importance of Various Activities
279 Exhibit R1.6
Students' Perception of Their Mothers' View of the Importance of Various Activities
280 Exhibit R1.7
Students' Perception of Their Friends' View of the Importance of Various Activities

Why Students Need to Do Well in Mathematics

Students' Daily Out-of-School Study Time
283
Exhibit R1.10
Students' Daily Leisure Time
284
Exhibit R1.11
Students' Reports That Mathematics Is Not One of Their Strengths
285 Exhibit R1.12
Students' Liking Mathematics
R R

2

287 REFERENCE 2

The Mathematics Curriculum

Organization of Mathematics Instruction

Detailed Information About Topics in the Intended
Curriculum, Up to and Including Eighth Grade Fractions and Number Sense

Detailed Information About Topics in the Intended Curriculum, Up to and Including Eighth Grade Measurement

Detailed Information About Topics in the Intended Curriculum, Up to and Including Eighth Grade - Data Representation, Analysis, and Probability
Exhibit R2.5
Detailed Information About Topics in the Intended Curriculum, Up to and Including Eighth Grade Geometry
295 Exhibit R2.6
Detailed Information About Topics in the Intended Curriculum, Up to and Including Eighth Grade - Algebra

When Fractions and Number Sense Topics Are Taught
297 Exhibit R2.8
When Measurement Topics Are Taught
When Data Representation, Analysis, and Probability Topics Are Taught
299 Exhibit R2.10
When Geometry Topics Are Taught
300 Exhibit R2.11
When Algebra Topics Are Taught

3

301 REFERENCE 3

Teachers and Instruction

302 Exhibit R3.1
Teachers' Confidence in Their Preparation to Teach Mathematics Topics

305 Exhibit R3.2
Shortages of Teachers Qualified to Teach Mathematics Affecting Capacity to Provide Instruction
306 Exhibit R3.3
Percentage of Students Whose Mathematics Teachers Agree or Strongly Agree with Statements About the Nature of Mathematics and Mathematics Teaching
308 Exhibit R3.4
Percentage of Students Whose Mathematics Teachers Think Particular Abilities Are Very Important for Students' Success in Mathematics in School
310 Exhibit R3.5
How Teachers Spend Their Formally Scheduled School Time
311 Exhibit R3.6
Average Number of Instructional Days in the School Year
312 Exhibit R3.7
Asking Students to Do Problem-Solving Activities or
Computation During Mathematics Lessons
313 Exhibit R3.8
Students Using Things from Everyday Life in Solving
Mathematics Problems
314 Exhibit R3.9
Students' Reports on Frequency of Calculator Use in Mathematics Class
315 Exhibit R3. 10
Ways in Which Calculators Are Used
316 Exhibit R3. 11
Amount of Mathematics Homework
317 Exhibit R3.12
Assigning Mathematics Homework Based on Projects and Investigations
318 Exhibit R3. 13
Frequency of Having a Quiz or Test in Mathematics Class

318 REFERENCE 4

School Contexts for Learning and Instruction

320 Exhibit R4.1
Shortages or Inadequacies in General Facilities and Materials That Affect Schools' Capacity to Provide Mathematics Instruction Some or A Lot

321 Exhibit R4.2

Shortages or Inadequacies in Equipment and Materials for Mathematics Instruction That Affect Schools' Capacity to Provide Mathematics Instruction Some or A Lot
322 Exhibit R4.3
Availability of Computers for Instructional Purposes
323 Exhibit R4.4
Schools' Access to the Internet

325 APPENDIX A

Overview of TIMSS Procedures:
Mathematics Achievement
327
History
327 Participants in TIMSS Benchmarking
328 Developing the TIMSS 1999
Mathematics Test
330 Exhibit A. 1
The Three Aspects and Major Categories of the Mathematics Frameworks
331 Exhibit A. 2
Distribution of Mathematics Items by Content Reporting Category and Performance Category

332 TIMSS Test Design
332 Background Questionnaires
333 Translation and Verification
333 Population Definition and Sampling
Exhibit A. 3
Coverage of TIMSS 1999 Target Population - Countries
338 Exhibit A. 4
School Sample Sizes - Countries
340 Exhibit A. 5
Student Sample Sizes - Countries
342
Exhibit A. 6
Overall Participation Rates - Countries
344 Data Collection
345 Scoring the Free-Response Items
347 Exhibit A. 7
TIMSS 1999 Within-Country Free-Response Scoring Reliability Data for
Mathematics Items
348 Test Reliability
349 Exhibit A. 8
Cronbach's Alpha Reliability Coefficient - TIMSS 1999 Mathematics Test

350 Data Processing
350 IRT Scaling and Data Analysis
351 Estimating Sampling Error
352 Making Multiple Comparisons
352 Setting International Benchmarks of Student Achievement

353 Mathematics Curriculum Questionnaire
354 Exhibit A. 9
Country-Specific Variations in Mathematics Topics in the Curriculum Questionnaire

B

355 APPENDIX B

Multiple Comparisons of Average
Achievement in Mathematics Content Areas
356 Exhibit B. 1
Multiple Comparisons of Average Achievement in
Fractions and Number Sense
358 Exhibit B. 2
Multiple Comparisons of Average Achievement in
Measurement
360 Exhibit B. 3
Multiple Comparisons of Average Achievement in Data
Representation, Analysis, and Probability
362 Exhibit B. 4
Multiple Comparisons of Average Achievement
in Geometry
364 Exhibit B. 5
Multiple Comparisons of Average Achievement in Algebra

C
367 APPENDIX C
Percentiles and Standard Deviations of Mathematics Achievement

368 Exhibit C. 1
Percentiles of Achievement in Mathematics
370 Exhibit C. 2
Standard Deviations of Achievement in Mathematics

D

373 APPENDIX D

Descriptions of Mathematics Items at Each Benchmark

386 APPENDIX E
Acknowledgments

